jueves, 21 de agosto de 2008

HISTORIA DE LA COMPUTADORA

Máquina capaz de efectuar una secuencia de operaciones mediante un programa, de tal manera, que se realice un procesamiento sobre un conjunto de datos de entrada, obteniéndose otro conjunto de datos de salida.

TIPOS DE COMPUTADORAS

Se clasifican de acuerdo al principio de operación de Analógicas y Digitales.

* COMPUTADORA ANALÓGICA

1. Aprovechando el hecho de que diferentes fenómenos físicos se describen por relaciones matemáticas similares (v.g. Exponenciales, Logarítmicas, etc.) pueden entregar la solución muy rápidamente. Pero tienen el inconveniente que al cambiar el problema a resolver, hay que realambrar la circuitería (cambiar el Hardware).

* COMPUTADORA DIGITAL

1. Están basadas en dispositivos biestables, i.e., que sólo pueden tomar uno de dos valores posibles: ‘1’ ó ‘0’. Tienen como ventaja, el poder ejecutar diferentes programas para diferentes problemas, sin tener que la necesidad de modificar físicamente la máquina.

HISTORIA DE LA COMPUTACIÓN

Uno de los primeros dispositivos mecánicos para contar fue el ábaco, cuya historia se remonta a las antiguas civilizaciones griega y romana. Este dispositivo es muy sencillo, consta de cuentas ensartadas en varillas que a su vez están montadas en un marco rectangular. Al desplazar las cuentas sobre varillas, sus posiciones representan valores almacenados, y es mediante dichas posiciones que este representa y almacena datos. A este dispositivo no se le puede llamar computadora por carecer del elemento fundamental llamado programa.

Otro de los inventos mecánicos fue la Pascalina inventada por Blaise Pascal (1623 - 1662) de Francia y la de Gottfried Wilhelm von Leibniz (1646 - 1716) de Alemania. Con estas máquinas, los datos se representaban mediante las posiciones de los engranajes, y los datos se introducían manualmente estableciendo dichas posiciones finales de las ruedas, de manera similar a como leemos los números en el cuentakilómetros de un automóvil.

La primera computadora fue la máquina analítica creada por Charles Babbage, profesor matemático de la Universidad de Cambridge en el siglo XIX. La idea que tuvo Charles Babbage sobre un computador nació debido a que la elaboración de las tablas matemáticas era un proceso tedioso y propenso a errores. En 1823 el gobierno Británico lo apoyo para crear el proyecto de una máquina de diferencias, un dispositivo mecánico para efectuar sumas repetidas.

Mientras tanto Charles Jacquard (francés), fabricante de tejidos, había creado un telar que podía reproducir automáticamente patrones de tejidos leyendo la información codificada en patrones de agujeros perforados en tarjetas de papel rígido. Al enterarse de este método Babbage abandonó la máquina de diferencias y se dedico al proyecto de la máquina analítica que se pudiera programar con tarjetas perforadas para efectuar cualquier cálculo con una precisión de 20 dígitos. La tecnología de la época no bastaba para hacer realidad sus ideas.

El mundo no estaba listo, y no lo estaría por cien años más.

En 1944 se construyó en la Universidad de Harvard, la Mark I, diseñada por un equipo encabezado por Howard H. Aiken. Esta máquina no está considerada como computadora electrónica debido a que no era de propósito general y su funcionamiento estaba basado en dispositivos electromecánicos llamados relevadores.

En 1947 se construyó en la Universidad de Pennsylvania la ENIAC (Electronic Numerical Integrator And Calculator) que fue la primera computadora electrónica, el equipo de diseño lo encabezaron los ingenieros John Mauchly y John Eckert. Esta máquina ocupaba todo un sótano de la Universidad, tenía más de 18 000 tubos de vacío, consumía 200 KW de energía eléctrica y requería todo un sistema de aire acondicionado, pero tenía la capacidad de realizar cinco mil operaciones aritméticas en un segundo.

El proyecto, auspiciado por el departamento de Defensa de los Estados Unidos, culminó dos años después, cuando se integró a ese equipo el ingeniero y matemático húngaro John von Neumann (1903 - 1957). Las ideas de von Neumann resultaron tan fundamentales para su desarrollo posterior, que es considerado el padre de las computadoras.

La EDVAC (Electronic Discrete Variable Automatic Computer) fue diseñada por este nuevo equipo. Tenía aproximadamente cuatro mil bulbos y usaba un tipo de memoria basado en tubos llenos de mercurio por donde circulaban señales eléctricas sujetas a retardos.

La idea fundamental de von Neumann fue: permitir que en la memoria coexistan datos con instrucciones, para que entonces la computadora pueda ser programada en un lenguaje, y no por medio de alambres que eléctricamente interconectaban varias secciones de control, como en la ENIAC.

Todo este desarrollo de las computadoras suele divisarse por generaciones y el criterio que se determinó para determinar el cambio de generación no está muy bien definido, pero resulta aparente que deben cumplirse al menos los siguientes requisitos:

* La forma en que están construidas.
* Forma en que el ser humano se comunica con ellas.

Primera Generación

En esta generación había una gran desconocimiento de las capacidades de las computadoras, puesto que se realizó un estudio en esta época que determinó que con veinte computadoras se saturaría el mercado de los Estados Unidos en el campo de procesamiento de datos.

Esta generación abarco la década de los cincuenta. Y se conoce como la primera generación. Estas máquinas tenían las siguientes características:

* Estas máquinas estaban construidas por medio de tubos de vacío.
* Eran programadas en lenguaje de máquina.

En esta generación las máquinas son grandes y costosas (de un costo aproximado de ciento de miles de dólares).

En 1951 aparece la UNIVAC (NIVersAl Computer), fue la primera computadora comercial, que disponía de mil palabras de memoria central y podían leer cintas magnéticas, se utilizó para procesar el censo de 1950 en los Estados Unidos.

En las dos primeras generaciones, las unidades de entrada utilizaban tarjetas perforadas, retomadas por Herman Hollerith (1860 - 1929), quien además fundó una compañía que con el paso del tiempo se conocería como IBM (International Bussines Machines).

Después se desarrolló por IBM la IBM 701 de la cual se entregaron 18 unidades entre 1953 y 1957.

Posteriormente, la compañía Remington Rand fabricó el modelo 1103, que competía con la 701 en el campo científico, por lo que la IBM desarrollo la 702, la cual presentó problemas en memoria, debido a esto no duró en el mercado.

La computadora más exitosa de la primera generación fue la IBM 650, de la cual se produjeron varios cientos. Esta computadora que usaba un esquema de memoria secundaria llamado tambor magnético, que es el antecesor de los discos actuales.

Otros modelos de computadora que se pueden situar en los inicios de la segunda generación son: la UNIVAC 80 y 90, las IBM 704 y 709, Burroughs 220 y UNIVAC 1105.

Segunda Generación

Cerca de la década de 1960, las computadoras seguían evolucionando, se reducía su tamaño y crecía su capacidad de procesamiento. También en esta época se empezó a definir la forma de comunicarse con las computadoras, que recibía el nombre de programación de sistemas.

Las características de la segunda generación son las siguientes:

* Están construidas con circuitos de transistores.
* Se programan en nuevos lenguajes llamados lenguajes de alto nivel.

En esta generación las computadoras se reducen de tamaño y son de menor costo. Aparecen muchas compañías y las computadoras eran bastante avanzadas para su época como la serie 5000 de Burroughs y la ATLAS de la Universidad de Manchester.

Algunas de estas computadoras se programaban con cintas perforadas y otras más por medio de cableado en un tablero. Los programas eran hechos a la medida por un equipo de expertos: analistas, diseñadores, programadores y operadores que se manejaban como una orquesta para resolver los problemas y cálculos solicitados por la administración. El usuario final de la información no tenía contacto directo con las computadoras. Esta situación en un principio se produjo en las primeras computadoras personales, pues se requería saberlas "programar" (alimentarle instrucciones) para obtener resultados; por lo tanto su uso estaba limitado a aquellos audaces pioneros que gustaran de pasar un buen número de horas escribiendo instrucciones, "corriendo" el programa resultante y verificando y corrigiendo los errores o bugs que aparecieran. Además, para no perder el "programa" resultante había que "guardarlo" (almacenarlo) en una grabadora de astte, pues en esa época no había discos flexibles y mucho menos discos duros para las PC; este procedimiento podía tomar de 10 a 45 minutos, según el programa. El panorama se modificó totalmente con la aparición de las computadoras personales con mejore circuitos, más memoria, unidades de disco flexible y sobre todo con la aparición de programas de aplicación general en donde el usuario compra el programa y se pone a trabajar. Aparecen los programas procesadores de palabras como el célebre Word Star, la impresionante hoja de cálculo (spreadsheet) Visicalc y otros más que de la noche a la mañana cambian la imagen de la PC. El sortware empieza a tratar de alcanzar el paso del hardware. Pero aquí aparece un nuevo elemento: el usuario.

El usuario de las computadoras va cambiando y evolucionando con el tiempo. De estar totalmente desconectado a ellas en las máquinas grandes pasa la PC a ser pieza clave en el diseño tanto del hardware como del software. Aparece el concepto de human interface que es la relación entre el usuario y su computadora. Se habla entonces de hardware ergonómico (adaptado a las dimensiones humanas para reducir el cansancio), diseños de pantallas antirreflejos y teclados que descansen la muñeca. Con respecto al software se inicia una verdadera carrera para encontrar la manera en que el usuario pase menos tiempo capacitándose y entrenándose y más tiempo produciendo. Se ponen al alcance programas con menús (listas de opciones) que orientan en todo momento al usuario (con el consiguiente aburrimiento de los usuarios expertos); otros programas ofrecen toda una artillería de teclas de control y teclas de funciones (atajos) para efectuar toda suerte de efectos en el trabajo (con la consiguiente desorientación de los usuarios novatos). Se ofrecen un sinnúmero de cursos prometiendo que en pocas semanas hacen de cualquier persona un experto en los programas comerciales. Pero el problema "constante" es que ninguna solución para el uso de los programas es "constante". Cada nuevo programa requiere aprender nuevos controles, nuevos trucos, nuevos menús. Se empieza a sentir que la relación usuario-PC no está acorde con los desarrollos del equipo y de la potencia de los programas. Hace falta una relación amistosa entre el usuario y la PC.

Las computadoras de esta generación fueron: la Philco 212 (esta compañía se retiró del mercado en 1964) y la UNIVAC M460, la Control Data Corporation modelo 1604, seguida por la serie 3000, la IBM mejoró la 709 y sacó al mercado la 7090, la National Cash Register empezó a producir máquinas para proceso de datos de tipo comercial, introdujo el modelo NCR 315.

La Radio Corporation of America introdujo el modelo 501, que manejaba el lenguaje COBOL, para procesos administrativos y comerciales. Después salió al mercado la RCA 601.

Tercera generación

Con los progresos de la electrónica y los avances de comunicación con las computadoras en la década de los 1960, surge la tercera generación de las computadoras. Se inaugura con la IBM 360 en abril de 1964.3

Las características de esta generación fueron las siguientes:

* Su fabricación electrónica esta basada en circuitos integrados.
* Su manejo es por medio de los lenguajes de control de los sistemas operativos.

La IBM produce la serie 360 con los modelos 20, 22, 30, 40, 50, 65, 67, 75, 85, 90, 195 que utilizaban técnicas especiales del procesador, unidades de cinta de nueve canales, paquetes de discos magnéticos y otras características que ahora son estándares (no todos los modelos usaban estas técnicas, sino que estaba dividido por aplicaciones).

El sistema operativo de la serie 360, se llamó OS que contaba con varias configuraciones, incluía un conjunto de técnicas de manejo de memoria y del procesador que pronto se convirtieron en estándares.

En 1964 CDC introdujo la serie 6000 con la computadora 6600 que se consideró durante algunos años como la más rápida.

En la década de 1970, la IBM produce la serie 370 (modelos 115, 125, 135, 145, 158, 168). UNIVAC compite son los modelos 1108 y 1110, máquinas en gran escala; mientras que CDC produce su serie 7000 con el modelo 7600. Estas computadoras se caracterizan por ser muy potentes y veloces.

A finales de esta década la IBM de su serie 370 produce los modelos 3031, 3033, 4341. Burroughs con su serie 6000 produce los modelos 6500 y 6700 de avanzado diseño, que se reemplazaron por su serie 7000. Honey - Well participa con su computadora DPS con varios modelos.

A mediados de la década de 1970, aparecen en el mercado las computadoras de tamaño mediano, o minicomputadoras que no son tan costosas como las grandes (llamadas también como mainframes que significa también, gran sistema), pero disponen de gran capacidad de procesamiento. Algunas minicomputadoras fueron las siguientes: la PDP - 8 y la PDP - 11 de Digital Equipment Corporation, la VAX (Virtual Address eXtended) de la misma compañía, los modelos NOVA y ECLIPSE de Data General, la serie 3000 y 9000 de Hewlett - Packard con varios modelos el 36 y el 34, la Wang y Honey - Well -Bull, Siemens de origen alemán, la ICL fabricada en Inglaterra. En la Unión Soviética se utilizó la US (Sistema Unificado, Ryad) que ha pasado por varias generaciones.

Cuarta Generación

Aquí aparecen los microprocesadores que es un gran adelanto de la microelectrónica, son circuitos integrados de alta densidad y con una velocidad impresionante. Las microcomputadoras con base en estos circuitos son extremadamente pequeñas y baratas, por lo que su uso se extiende al mercado industrial. Aquí nacen las computadoras personales que han adquirido proporciones enormes y que han influido en la sociedad en general sobre la llamada "revolución informática".

En 1976 Steve Wozniak y Steve Jobs inventan la primera microcomputadora de uso masivo y más tarde forman la compañía conocida como la Apple que fue la segunda compañía más grande del mundo, antecedida tan solo por IBM; y esta por su parte es aún de las cinco compañías más grandes del mundo.

En 1981 se vendieron 800 00 computadoras personales, al siguiente subió a 1 400 000. Entre 1984 y 1987 se vendieron alrededor de 60 millones de computadoras personales, por lo que no queda duda que su impacto y penetración han sido enormes.

Con el surgimiento de las computadoras personales, el software y los sistemas que con ellas de manejan han tenido un considerable avance, porque han hecho más interactiva la comunicación con el usuario. Surgen otras aplicaciones como los procesadores de palabra, las hojas electrónicas de cálculo, paquetes gráficos, etc. También las industrias del Software de las computadoras personales crece con gran rapidez, Gary Kildall y William Gates se dedicaron durante años a la creación de sistemas operativos y métodos para lograr una utilización sencilla de las microcomputadoras (son los creadores de CP/M y de los productos de Microsoft).

No todo son microcomputadoras, por su puesto, las minicomputadoras y los grandes sistemas continúan en desarrollo. De hecho las máquinas pequeñas rebasaban por mucho la capacidad de los grandes sistemas de 10 o 15 años antes, que requerían de instalaciones costosas y especiales, pero sería equivocado suponer que las grandes computadoras han desaparecido; por el contrario, su presencia era ya ineludible en prácticamente todas las esferas de control gubernamental, militar y de la gran industria. Las enormes computadoras de las series CDC, CRAY, Hitachi o IBM por ejemplo, eran capaces de atender a varios cientos de millones de operaciones por segundo.

Quinta Generación

En vista de la acelerada marcha de la microelectrónica, la sociedad industrial se ha dado a la tarea de poner también a esa altura el desarrollo del software y los sistemas con que se manejan las computadoras. Surge la competencia internacional por el dominio del mercado de la computación, en la que se perfilan dos líderes que, sin embargo, no han podido alcanzar el nivel que se desea: la capacidad de comunicarse con la computadora en un lenguaje más cotidiano y no a través de códigos o lenguajes de control especializados.

Japón lanzó en 1983 el llamado "programa de la quinta generación de computadoras", con los objetivos explícitos de producir máquinas con innovaciones reales en los criterios mencionados. Y en los Estados Unidos ya está en actividad un programa en desarrollo que persigue objetivos semejantes, que pueden resumirse de la siguiente manera:

* Procesamiento en paralelo mediante arquitecturas y diseños especiales y circuitos de gran velocidad.
* Manejo de lenguaje natural y sistemas de inteligencia artificial.

El futuro previsible de la computación es muy interesante, y se puede esperar que esta ciencia siga siendo objeto de atención prioritaria de gobiernos y de la sociedad en conjunto.

MODELO DE VON NEUMANN

Las computadoras digitales actuales se ajustan al modelo propuesto por el matemático John Von Neumann. De acuerdo con el, una característica importante de este modelo es que tanto los datos como los programas, se almacenan en la memoria antes de ser utilizados.

HISTORIA DE LA ESTADISTICA

Los comienzos de la estadística pueden ser hallados en el antiguo Egipto, cuyos faraones lograron recopilar, hacia el año 3050 antes de Cristo, prolijos datos relativos a la población y la riqueza del país. De acuerdo al historiador griego Heródoto, dicho registro de riqueza y población se hizo con el objetivo de preparar la construcción de las pirámides. En el mismo Egipto, Ramsés II hizo un censo de las tierras con el objeto de verificar un nuevo reparto.

En el antiguo Israel la Biblia da referencias, en el libro de los Números, de los datos estadísticos obtenidos en dos recuentos de la población hebrea. El rey David por otra parte, ordenó a Joab, general del ejército hacer un censo de Israel con la finalidad de conocer el número de la población.

También los chinos efectuaron censos hace más de cuarenta siglos. Los griegos efectuaron censos periódicamente con fines tributarios, sociales (división de tierras) y militares (cálculo de recursos y hombres disponibles). La investigación histórica revela que se realizaron 69 censos para calcular los impuestos, determinar los derechos de voto y ponderar la potencia guerrera.

Pero fueron los romanos, maestros de la organización política, quienes mejor supieron emplear los recursos de la estadística. Cada cinco años realizaban un censo de la población y sus funcionarios públicos tenían la obligación de anotar nacimientos, defunciones y matrimonios, sin olvidar los recuentos periódicos del ganado y de las riquezas contenidas en las tierras conquistadas. Para el nacimiento de Cristo sucedía uno de estos empadronamientos de la población bajo la autoridad del imperio.

Durante los mil años siguientes a la caída del imperio Romano se realizaron muy pocas operaciones Estadísticas, con la notable excepción de las relaciones de tierras pertenecientes a la Iglesia, compiladas por Pipino el Breve en el 758 y por Carlomagno en el 762 DC. Durante el siglo IX se realizaron en Francia algunos censos parciales de siervos. En Inglaterra, Guillermo el Conquistador recopiló el Domesday Book o libro del Gran Catastro para el año 1086, un documento de la propiedad, extensión y valor de las tierras de Inglaterra. Esa obra fue el primer compendio estadístico de Inglaterra.

Aunque Carlomagno, en Francia; y Guillermo el Conquistador, en Inglaterra, trataron de revivir la técnica romana, los métodos estadísticos permanecieron casi olvidados durante la Edad Media.

Durante los siglos XV, XVI, y XVII, hombres como Leonardo de Vinci, Nicolás Copérnico, Galileo, Neper, William Harvey, Sir Francis Bacon y René Descartes, hicieron grandes operaciones al método científico, de tal forma que cuando se crearon los Estados Nacionales y surgió como fuerza el comercio internacional existía ya un método capaz de aplicarse a los datos económicos.

Para el año 1532 empezaron a registrarse en Inglaterra las defunciones debido al temor que Enrique VII tenía por la peste. Más o menos por la misma época, en Francia la ley exigió a los clérigos registrar los bautismos, fallecimientos y matrimonios. Durante un brote de peste que apareció a fines de la década de 1500, el gobierno inglés comenzó a publicar estadísticas semanales de los decesos. Esa costumbre continuó muchos años, y en 1632 estos Bills of Mortality (Cuentas de Mortalidad) contenían los nacimientos y fallecimientos por sexo. En 1662, el capitán John Graunt usó documentos que abarcaban treinta años y efectuó predicciones sobre el número de personas que morirían de varias enfermedades y sobre las proporciones de nacimientos de varones y mujeres que cabría esperar. El trabajo de Graunt, condensado en su obra Natural and Political Observations...Made upon the Bills of Mortality (Observaciones Políticas y Naturales ... Hechas a partir de las Cuentas de Mortalidad), fue un esfuerzo innovador en el análisis estadístico.

Por el año 1540 el alemán Sebastián Muster realizó una compilación estadística de los recursos nacionales, comprensiva de datos sobre organización política, instrucciones sociales, comercio y poderío militar. Durante el siglo XVII aportó indicaciones más concretas de métodos de observación y análisis cuantitativo y amplió los campos de la inferencia y la teoría Estadística.

Los eruditos del siglo XVII demostraron especial interés por la Estadística Demográfica como resultado de la especulación sobre si la población aumentaba, decrecía o permanecía estática.

En los tiempos modernos tales métodos fueron resucitados por algunos reyes que necesitaban conocer las riquezas monetarias y el potencial humano de sus respectivos países. El primer empleo de los datos estadísticos para fines ajenos a la política tuvo lugar en 1691 y estuvo a cargo de Gaspar Neumann, un profesor alemán que vivía en Breslau. Este investigador se propuso destruir la antigua creencia popular de que en los años terminados en siete moría más gente que en los restantes, y para lograrlo hurgó pacientemente en los archivos parroquiales de la ciudad. Después de revisar miles de partidas de defunción pudo demostrar que en tales años no fallecían más personas que en los demás. Los procedimientos de Neumann fueron conocidos por el astrónomo inglés Halley, descubridor del cometa que lleva su nombre, quien los aplicó al estudio de la vida humana. Sus cálculos sirvieron de base para las tablas de mortalidad que hoy utilizan todas las compañías de seguros.

Durante el siglo XVII y principios del XVIII, matemáticos como Bernoulli, Francis Maseres, Lagrange y Laplace desarrollaron la teoría de probabilidades. No obstante durante cierto tiempo, la teoría de las probabilidades limitó su aplicación a los juegos de azar y hasta el siglo XVIII no comenzó a aplicarse a los grandes problemas científicos.

Godofredo Achenwall, profesor de la Universidad de Gotinga, acuñó en 1760 la palabra estadística, que extrajo del término italiano statista (estadista). Creía, y con sobrada razón, que los datos de la nueva ciencia serían el aliado más eficaz del gobernante consciente. La raíz remota de la palabra se halla, por otra parte, en el término latino status, que significa estado o situación; Esta etimología aumenta el valor intrínseco de la palabra, por cuanto la estadística revela el sentido cuantitativo de las más variadas situaciones.

Jacques Quételect es quien aplica las Estadísticas a las ciencias sociales. Este interpretó la teoría de la probabilidad para su uso en las ciencias sociales y resolver la aplicación del principio de promedios y de la variabilidad a los fenómenos sociales. Quételect fue el primero en realizar la aplicación práctica de todo el método Estadístico, entonces conocido, a las diversas ramas de la ciencia.

Entretanto, en el período del 1800 al 1820 se desarrollaron dos conceptos matemáticos fundamentales para la teoría Estadística; la teoría de los errores de observación, aportada por Laplace y Gauss; y la teoría de los mínimos cuadrados desarrollada por Laplace, Gauss y Legendre. A finales del siglo XIX, Sir Francis Gaston ideó el método conocido por Correlación, que tenía por objeto medir la influencia relativa de los factores sobre las variables. De aquí partió el desarrollo del coeficiente de correlación creado por Karl Pearson y otros cultivadores de la ciencia biométrica como J. Pease Norton, R. H. Hooker y G. Udny Yule, que efectuaron amplios estudios sobre la medida de las relaciones.

Los progresos más recientes en el campo de la Estadística se refieren al ulterior desarrollo del cálculo de probabilidades, particularmente en la rama denominada indeterminismo o relatividad, se ha demostrado que el determinismo fue reconocido en la Física como resultado de las investigaciones atómicas y que este principio se juzga aplicable tanto a las ciencias sociales como a las físicas.

martes, 19 de agosto de 2008

pop3

En informática se utiliza el Post Office Protocol (POP3) en clientes locales de correo para obtener los mensajes de correo electrónico almacenados en un servidor remoto. La mayoría de los suscriptores de los proveedores de Internet acceden a sus correos a través de POP3.
El diseño de POP3 es para recibir correo y no para enviar y sus predecesores permite que los usuarios con conexiones intermitentes (tales como las conexiones módem), descarguen su correo electrónico cuando se encuentren conectados de tal manera que puedan ver y manipular sus mensajes sin necesidad de permanecer conectados. Cabe mencionar que la mayoría de los clientes de correo incluyen la opción de dejar los mensajes en el servidor, de manera tal que, un cliente que utilice POP3 se conecta, obtiene todos los mensajes, los almacena en la computadora del usuario como mensajes nuevos, los elimina del servidor y finalmente se desconecta. En contraste, el protocolo IMAP permite los modos de operación conectado y desconectado.

Los clientes de correo electrónico que utilizan IMAP dejan por lo general los mensajes en el servidor hasta que el usuario los elimina explícitamente. Esto y otros factores hacen que la operación de IMAP permita a múltiples clientes acceder al mismo buzón de correo. La mayoría de los clientes de correo electrónico soportan POP3 ó IMAP; sin embargo, solo unos cuantos proveedores de internet ofrecen IMAP como un valor agregado a sus servicios.

Los clientes que utilizan la opción dejar mensajes en el servidor por lo general utilizan la orden UIDL ('Unique IDentification Listing). La mayoría de las órdenes de POP3 identifican los mensajes dependiendo de su número ordinal del servidor de correo. Esto genera problemas al momento que un cliente pretende dejar los mensajes en el servidor, ya que los mensajes con número cambian de una conexión al servidor a otra. Por ejemplo un buzón de correo contenía 5 mensajes en la última conexión, después otro cliente elimina el mensaje número 3, el siguiente usuario se topará con que los últimos dos mensajes están decrementados en uno. El UIDL proporciona un mecanismo que evita los problemas de numeración. El servidor le asigna una cadena de caracteres única y permanente al mensaje. Cuando un cliente de correo compatible con POP3 se conecta al servidor utiliza la orden UIDL para obtener el mapeo del identificador de mensaje. De esta manera el cliente puede utilizar ese mapeo para determinar qué mensajes hay que descargar y cuáles hay que guardar al momento de la descarga.

Al igual que otros viejos protocolos de internet, POP3 utilizaba un mecanismo de firmado sin cifrado. La transmisión de contraseñas de POP3 en texto plano aún se da. En la actualidad POP3 cuenta con diversos métodos de autenticación que ofrecen una diversa gama de niveles de protección contra los accesos ilegales al buzón de correo de los usuarios. Uno de estos es APOP, el cual utiliza funciones MD5 para evitar los ataques de contraseñas. Mozilla, Eudora, Novell Evolution así como Mozilla Thunderbird implementan funciones APOP...
Para establecer una conexión a un servidor POP, el cliente de correo abre una conexión TCP en el puerto 110 del servidor. Cuando la conexión se ha establecido, el servidor POP envía al cliente POP una invitación y después las dos máquinas se envían entre sí otras órdenes y respuestas que se especifican en el protocolo. Como parte de esta comunicación, al cliente POP se le pide que se autentifique (Estado de autenticación), donde el nombre de usuario y la contraseña del usuario se envían al servidor POP. Si la autenticación es correcta, el cliente POP pasa al Estado de transacción, en este estado se pueden utilizar órdenes LIST, RETR y DELE para mostrar, descargar y eliminar mensajes del servidor, respectivamente. Los mensajes definidos para su eliminación no se quitan realmente del servidor hasta que el cliente POP envía la orden QUIT para terminar la sesión. En ese momento, el servidor POP pasa al Estado de actualización, fase en la que se eliminan los mensajes marcados y se limpian todos los recursos restantes de la sesión.

Puedes conectarte manualmente al servidor POP3 haciendo Telnet al puerto 110. Es muy útil cuando te envían un mensaje con un fichero muy largo que no quieres recibir.

* USER Identificación de usuario (Solo se realiza una vez).

* PASS Envías la clave del servidor.

* STAT Da el número de mensajes no borrados en el buzón y su longitud total.

* LIST Muestra todo los mensajes no borrados con su longitud.

* RETR Solicita el envío del mensaje especificando el número (no se borra del buzón).

* TOP Muestra la cabecera y el número de líneas requerido del mensaje especificando el número.

* DELE Borra el mensaje especificando el número.

* RSET Recupera los mensajes borrados (en la conexión actual).

* QUIT Salir.
La ventaja con otros protocolos es que entre servidor-cliente no se tienen que enviar tantas órdenes para la comunicación entre ellos. El protocolo POP también funciona adecuadamente si no se utiliza una conexión constante a Internet o a la red que contiene el servidor de correo.

ejercicios de logica matematica

La razón entre los gastos y los ingresos en el negocio de los Romano es de 5 a 8. ¿Cuáles fueron sus gastos en un mes en el que la ganancia fue de $3,675? ¿y los ingresos?

b) En un cierto país para pasar un telegrama hay que pagar una cantidad fija por las 10 primeras palabras y una cantidad adicional por cada palabra por encima de las 10. Si por 15 palabras se pagaron $11.75 y por 19 palabras se pagó $14.75, ¿cuál es el precio fijo y cuál es el precio de cada palabra adicional?

c) De un número N, de dos dígitos, se sustrae un número que tiene los mismos dígitos de N pero invertidos. El resultado es el cubo de otro número positivo. ¿Cuáles son los valores posibles de N?

d) Un teatro cobra $60 por persona, pero tiene boletos para estudiantes con credencial a mitad de precio. Si en un día se obtuvieron ingresos de $29,220 y asistieron 549 personas, ¿cuántos boletos de cada tipo se vendieron?

e) Un señor invirtió $14,000, parte al 7% y parte al 12% de interés anual. El ingreso anual debido a esas inversiones fue de $1,430. ¿Cuánto invirtió en cada una de las tasas?

f) Rodolfo acostumbra subir corriendo dos escaleras eléctricas, de 20 m de longitud cada una, desplazándose la primera hacia arriba y la segunda hacia abajo, en 15 segundos. Si se mantuviese quieto en una de las escaleras, en 20 segundos se encontraría en el otro extremo de ella. Cuando las escaleras no funcionan, ¿en cuánto tiempo subirá por ellas?

g) El siguiente problema fue descubierto en los escritos del matemático hindú Mahavira (c. 850):

La cuarta parte de un hato de camellos fue vista en el bosque, el doble de la raíz cuadrada del total de camellos del hato se fue a las laderas de la montaña, y tres veces cinco camellos fueron vistos en la orilla de un río. ¿Cuál es la medida numérica del hato de camellos?

h) Un rectángulo tiene 92 cm de perímetro y su diagonal mide 34 cm. Halla sus lados.

i) La hipotenusa de un triángulo rectángulo mide 19.5 m. Si la longitud de cada cateto aumentará 4.5 m, la hipotenusa aumentaría 6 m. Halla los catetos del triángulo original.

j) Encuentra un polinomio p(x), de grado 3, cuyos ceros son -2, 2 y 3, y, además, p(1)=18.

k) Cuando x2 + 5x - 2 se divide entre x + n el residuo es - 8. Determina todos los valores posibles de n.

l) La distancia entre dos poblaciones P y Q es de x kilómetros. Si tú conduces un automóvil en dirección de P a Q a velocidad media de V1 km/h, y regresa de Q a P a velocidad media de V2 km/h. ¿Cuál es tu velocidad promedio durante el viaje redondo?



n) Cuatro niñas alquilaron un bote por $60. La primera pagó la mitad de la suma de lo que pagaron las otras tres. La segunda pagó un tercio de la suma de lo que pagaron las otras tres. La tercera pagó un cuarto de la suma de lo que pagaron las otras tres. ¿Cuánto pagó la cuarta?

domingo, 17 de agosto de 2008

ARREGLOS EN PROGRAMACION

Un arreglo es una colección de datos del mismo tipo, que se almacenan en posiciones consecutivas de memoria y reciben un nombre común. Para referirse a un determinado elemento de un arreglo se deberá utilizar el nombre del arreglo acompañado de un índice el cual especifica la posición relativa en que se encuentra el elemento.
Los arreglos pueden ser:
unidimensionales (vectores).
Bidimensionales (matrices, tablas).
Multidimensionales(tres dimensiones o más).

ARRAY UNIDIMENSIONALES O VECTORES
Los pasos para la utilización de un vector son;
1 Declarar el vector: consiste en establecer el nombre, el tamaño y el tipo de los datos que se van a almacenar en el arreglo ejemplo:
hay que diferenciar dos términos :
tamaño del vector (T): es el numero máximo de elementos que puede contener el vector.
Numero de elementos(N): que indica cuantos elementos hay almacenados en el arreglo en determinado momento. Nota N<=T.

T = 10;
Real: notas[T]

2 Llenar el vector con los datos: Se puede hacer en el momento de la declaración asignando al vector los valores que necesitamos almacenar. Ejemplo.
real : notas[10] = {2.3 , 3.5 , 4.2 , 3.3 , 3.0 , 4.9 , 4.2 , 3.0 , 2.0 , 1.5 };

ó recorriendo el arreglo así:

para i = 1 hasta N
.......leer( notas[i] )
fin del para

3 manipular la información guardada en el vector. Para esto es necesario recorrer dicha estructura y se puede hacer de la siguiente manera.
para i = 1 hasta N
......mostrar ( notas[i] )
fin del para

las operaciones que se pueden realizar con los arreglos son las siguientes:
- lectura (llenar el vector)
- escritura (mostrar el vector)
- asignación (dar valor a una posición específica)
- actualización (inserción , eliminación, modificación )
- ordenación . (burbuja, inserción directa, selección directa, selle y quicksort).
- búsqueda. (secuencial , binaria, hash( por claves) ).

QUE ES UN ALGORITMO

Un algoritmo es una secuencia de pasos lógicos y ordenados con las cuales le damos solución a un problema determinado.

En la vida diaria cada uno de nosotros diseña y realiza algoritmos para solucionar los problemas cotidianos, es así que al levantarnos de la cama ya tenemos en la mente una serie de pasos que debemos seguir para llegar al sitio de estudio o al sitio de trabajo. Una vez en el sitio de estudio, tenemos en nuestra mente una serie de tareas que debemos realizar en unos horarios ya definidos.

Si quisiéramos realizar una comida especial, en nuestra mente construimos un algoritmo o serie de pasos que debemos seguir en un orden específico para que todo nos salga como queremos. Si quisiéramos transcribir estos pasos en una hoja de papel, para que otra persona realizará las mismas tareas y obtenga el mismo resultado que nosotros, debemos seguir una serie de normas para que esta otra persona nos entienda. Por ejemplo debe estar esctrito en el idioma que ella comprende, se deben enumerar los pasos etc. Las normas que se deben seguir al momento de transcribir el algoritmo depende de quien será el encargado de ejecutarlo, por ejemplo si quisieramos escribir la receta para que la ejecute una persona adulta las normas serán diferentes a las que debemos seguir si quisieramos escribir la receta para que le ejecute una niña.

LAS CARACTERÍSTICAS DE LOS ALGORITMOS

1. Un algoritmo debe ser preciso e indicar el orden de realización de cada paso.

2. Un algoritmo debe estar definido. Si se sigue el algoritmo dos veces, se debe obtener el mismo resultado cada vez.

3. Un algoritmo debe ser finito. Si se sigue el algoritmo. Se debe terminar en algún momento, o sea debe tener un número finito de pasos.

clasificacion de los algoritmos, segun quien los ejecute:

· algoritmos para ser ejecutados por personas.

· algoritmos para ser ejecutados por las computadoras.

ENFOQUES Y ANÁLISIS CUANTITATIVO Y CUALITATIVO

1.- Fundamentos y aplicaciones del enfoque cuantitativo

Apoyo fundamental en la estadística.

Si los resultados son cuantificables matemáticamente, pueden ser considerados científicos. Esto es, sólo si el hecho es cuantificable, puede ser investigado.

La estadística es al mismo tiempo la herramienta académica de recogida y análisis, y el producto que define la situación política, social y económica de los fenómenos estudiado.

Los datos, al convertirse en elementos constructores de la realidad turística, dejan de ser algo objetivo, para ser un producto más de la negociación entre los agentes que los producen.

Dato.- fruto de una definición acordada.

La propia lógica de producción masificada de datos del enfoque, conduce a éste hacia una simplificación de la realidad medida.

1.1.- La medida de las ciencias sociales

Medición.- asignación de números ejerciendo una labor de representación.

La utilidad principal de la medida consiste en que un enunciado más preciso contenga más información que un enunciado menos preciso, y que sea igualmente testable, es decir, que no pierda la relación con el sistema empírico.

Las principales fuentes de demanda de medida en ciencias sociales son las compañías de seguros y la creencia de que el tamaño de la población forma parte de la riqueza de las naciones.

Contar y medir son procesos inversos:

* contar.- proceso inductivo
* medir.- proceso deductivo

No hay acuerdo a la hora de establecer de una manera general dónde empieza el proceso de medición.

Tres tipos de medición:

A/ fundamental.- parece derivado de las propias leyes naturales.

B/ derivada o construida a partir de la relación de medidas fundamentales.

C/ medición por fiat o por atribución de características de medida a conceptos.

La medida es una forma de reducir la complejidad:

* Se reduce el objeto a una propiedad del mismo.
* La propia cuantificación es una reducción o selección.

Aportación más relevante de Lazarsfeld sobre la medida.- propuesta de medición en cuatro pasos:

+ reformulación de concepto en sus dimensiones.

+ conexión de las dimensiones con indicadores.

+ articulación de los indicadores en índices.

+ reconstrucción del concepto a partir de la articulación de índices.

Críticas a la medida de las ciencias sociales:

* A la extensionabilidad de conceptos de ciencias sociales.
* A la acumulación de situaciones distintas producidas por el instrumento de medida.

La medida en las ciencias sociales ha hecho hincapié en la relación de las dimensiones, concretadas en variables.

La medida no es siempre necesaria ni posible.

1.2.- La estadística y el enfoque cuantitativo

Estadística descriptiva.- trata de ordenar, describir y resumir un conjunto extenso de datos con el fin de conocer la población o la muestra de la que han sido extraídos.

Estadística inferencial.- trata de encontrar los procedimientos que le permitan inferir al total de la población, los datos obtenidos de esa pequeña muestra. Se ocupa también de proporcionar los medidos para averiguar si la asociación o relación que se produce teóricamente entre las variables observadas es estadísticamente significativa y/o se puede inferir a la población de la que se extrajo la muestra.

La diferencia de objetos de análisis y objetivos disciplinares hacen que debamos detenernos entre ambas para explicar los fundamentos de cada una de ellas.

La estadística descriptiva se basa teóricamente en la capacidad de explicación que tiene el orden y la cuantificación numérica de los fenómenos.

La estadística inferencial o inductiva tiene por objetivo principal averiguar el valor del dato poblacional, a partir de los datos y las medidas resumen obtenidas en la muestra.

La estadística inferencial intenta resolver en términos de probabilidad que las diferencias halladas entre dos muestras lo son porque las poblaciones de las que provienen son estadísticamente diferentes.

1.3.- La operacionalización nos sirve para comprender la lógica que nos permite transformar al lenguaje matemático los conceptos teóricos e hipótesis que se han construido para intentar explicar la realidad.

Operacionalización.- esta fase tiene por objetivo definir variables, indicadores e índices que nos sirvan para medir en la práctica.

Tres fases que intervienen en la cuantificación:

* conceptualización
* operacionalización
* medición

Debemos controlar el número de dimensiones posibles en que dividir la variable, para que ésta incluya el mayor número de respuestas posibles de los entrevistados sin que haga imposible el proceso de recogida.

Se realiza una clasificación que exponga las diferencias y motivos por los que se clasifican habitualmente las variables.

El primer criterio de la clasificación es el nivel de medición.

La importancia de los niveles de medición viene dado porque en ellos se construyen todas las medidas resumen y el análisis del enfoque.

Según el nivel de medición:

* nominal
* ordinal
* itervalor
* de razón

El segundo criterio adoptado es el de variables cualitativas y cuantitativas, y dentro de éstas, las de carácter discreto o continuo.

El tercer criterio se refiere al efecto o relación que existe entre variables. Con ellas se pretende saber cuál es la variable que causa las modificaciones y cuál se modifica en función de la otra.

No siempre una variable ocupa la misma función.

1.4.- La aplicación del enfoque cuantitativo a los estudios del turismo

Tradicionalmente la aplicación del enfoque cuantitativo en las ciencias sociales se ha ocupado del estudio de hechos y opiniones.

En la práctica, las demandas de investigación hacen que hechos y opiniones suelen ir juntas en los cuestionarios.

La utilización del enfoque cuantitativo en el estudio del sector turístico es hegemónico. Debido a :

* La orientación histórica de la investigación hacia el estudio de la dimensión económica del fenómeno.
* Necesidad de datos comparables a nivel internacional.

2.- Fundamentos y aplicaciones del enfoque cualitativo

Se acerca a investigar la realidad que no podía ser cuantificada numéricamente.

El material de este enfoque es el discurso social materializado en el lenguaje común, o producido en la situación empírica.

Similitudes entre los dos enfoques:

* Los dos necesitan de la lógica de la investigación empírica para hablar del objeto que observan.
* El proceso de producción de datos es un proceso lingüístico.

La construcción de la demanda desde la perspectiva y la palabra del observado no se ha contemplado en los estudios del turismo con el mismo interés que en el caso de la oferta.

2.1.- El enfoque cualitativo: definición y características

Características básicas:

* Concepción global.- participación activa en la investigación de todos los elementos que puedan influir a lo largo del proceso en la práctica y en los resultados obtenidos de la misma.
* Necesidad de comprender al observado en su propio mundo y con su propio lenguaje.

Hemos de considerar su mundo porque en él están las claves que nos permiten comprender por qué se expresa e interpreta la realidad como lo hace.

La relación del investigador con el observado suele ser muy alta. No hay mediadores.

2.2.- La aplicación del enfoque cualitativo en los estudios del turismo

Condicionada por su definición de complementareidad del espacio de investigación cuantitativo.

La perspectiva cualitativa puede actuar sobre ámbitos más restringidos y obtener una información más rica en lo que al carácter simbólico se refiere.

Abre la posibilidad de investigar la demanda insatisfecha abriendo así campos para la propia oferta.

3.- El análisis cuantitativo

Fases:

* Recogida de datos
* Comprobar que los datos han sido introducidos correctamente en los sistemas informáticos.
* Análisis estadístico de los datos.

Validación de la investigación:

+ errores aleatorios.- anulan la fiabilidad de las medidas

+ errores sistemáticos.- afectan a la validez de la medida

Fiabilidad.- precisión de la medida

Validez.- que la medida se corresponda realmente con lo que queremos medir.

Validar.- acción que utilizamos para conocer si una medida es válida

Validación pragmática.- capacidad de predicción que tenga una medida.

Se lleva a cabo comparando los resultados obtenidos con los datos extraídos por otros indicadores validados y ya aceptados del mismo concepto.

Validación construida.- se logra mediante la acumulación de pruebas empíricas y evidencias que justifiquen la correspondencia entre las medidas obtenidas y el marco teórico utilizado.

Validación interna y externa.

Validación discriminante.- evalúa la capacidad que tiene nuestro instrumento para medir exactamente el concepto que pretende, diferenciando al mismo tiempo otros conceptos teóricamente distintos.

Validación manifiesta.- proviene de la capacidad que tiene una medida de parecer válida y ser aceptada por todos.

Fiabilidad.- versa sobre la estabilidad con que se producen los valores al ser recogidos por nuestros instrumentos de medición.

Formas para evaluar la fiabilidad:

* Estabilidad ante la aplicación reiterada del instrumento.- se lleva a cabo aplicando el mismo cuestionario al mismo conjunto de casos en varias ocasiones a lo largo del tiempo.
* Equivalencia de los resultados ante otras medidas obtenidas a través de instrumentos diferentes.- se realiza aplicando varias formas alternativas de medición del mismo concepto.
* Método de submuestreo.- consiste en pasar el mismo cuestionario una sola vez, y al mismo tiempo, a pequeñas submuestras, lo más semejantes posible entre sí, de la muestra que vayamos a utilizar en el trabajo final.

4.- El análisis cualitativo

Está presente en todos los momentos de la investigación.

Hace que el proceso de investigación se desarrolle de un modo circular y global, dependiendo su desarrollo de los referentes obtenidos con la práctica, que de los componentes teóricos que llevaba el investigador consigo previamente al campo.

La dependencia del proceso de investigación cualitativo de la experiencia practica del investigador condiciona también el análisis y los resultados producidos por éste.

El discurso social insertado en el lenguaje es la base sobre la que actúa el análisis cualitativo.

El objetivo más característico es descubrir el sentido del discurso social y, a través de él, los efectos que éste tiene sobre los individuos y la estructura social.

Fases:

* Entrega del informe del contactador.
* Notas de campo registradas durante la observación.
* Trascripción.

Como complemento se debe tener en cuanta:

* Análisis de la interacción.
* Análisis de las estrategias.
* Vinculación al objeto de investigación u objetos/ discursos/ mensajes alternativos.

Los resultados son fiables por:

* La consideración de la representatividad estructural.
* La saturación.
* La superación de la individualidad haciendo referencia a la estructura social de pertenencia.

martes, 12 de agosto de 2008

INGENIERIA DE SOFTWARE

Este término fue introducido a finales de los 60 a raíz de la crisis del software.

Esta crisis fue el resultado de la introducción de la tercera generación del hardware.

El hardware dejo de ser un impedimento para el desarrollo de la informática; redujo los costos y mejoro la calidad y eficiencia en el software producido

La crisis se caracterizo por los siguientes problemas:

* Imprecisión en la planificación del proyecto y estimación de los costos.
* Baja calidad del software.
* Dificultad de mantenimiento de programas con un diseño poco estructurado, etc.

Por otra parte se exige que el software sea eficaz y barato tanto en el desarrollo como en la compra.

Tambien se requiere una serie de características como fiabilidad, facilidad de mantenimiento y de uso, eficiencia, etc.

2. Objetivos de la ingeniería de software

En la construcción y desarrollo de proyectos se aplican métodos y técnicas para resolver los problemas, la informática aporta herramientas y procedimientos sobre los que se apoya la ingeniería de software.

* mejorar la calidad de los productos de software
* aumentar la productividad y trabajo de los ingenieros del software.
* Facilitar el control del proceso de desarrollo de software.
* Suministrar a los desarrolladores las bases para construir software de alta calidad en una forma eficiente.
* Definir una disciplina que garantice la producción y el mantenimiento de los productos software desarrollados en el plazo fijado y dentro del costo estimado.

Objetivos de los proyectos de sistemas

Para que los objetivos se cumplan las empresas emprenden proyectos por las siguientes razones: "Las cinco C "

Capacidad

Las actividades de la organización están influenciadas por la capacidad de ésta para procesar transacciones con rapidez y eficiencia.

Los sistemas de información mejoran esta capacidad en tres formas.

* Aumentan la velocidad de procesamiento:

Los sistemas basados en computadora pueden ser de ayuda para eliminar la necesidad de cálculos tediosos y comparaciones repetitivas.

Un sistema automatizado puede ser de gran utilidad si lo que se necesita es un procesamiento acelerado.

*Aumento en el volumen:

La incapacidad para mantener el ritmo de procesamiento no significa el abandono de los procedimientos existentes. Quizá éstos resulten inadecuados para satisfacer las demandas actuales. En estas situaciones el analista de sistemas considera el impacto que tiene la introducción de procesamiento computarizado, si el sistema existente es manual. Es poco probable que únicamente el aumento de la velocidad sea la respuesta. El tiempo de procesamiento por transacción aumenta si se considera la cantidad de actividades comerciales de la empresa junto con su patrón de crecimiento.

* Recuperación más rápida de la información:

Las organizaciones almacenan grandes cantidades de datos, por eso, debe tenerse en cuenta donde almacenarlos y como recuperarlos cuando se los necesita.

Cuando un sistema se desarrolla en forma apropiada, se puede recuperar en forma rápida la información.

Costo

* Vigilancia de los costos:

Para determinar si la compañía evoluciona en la forma esperada, de acuerdo con lo presupuestado, se debe llevar a cabo el seguimiento de los costos de mano de obra, bienes y gastos generales.

La creciente competitividad del mercado crea la necesidad de mejores métodos para seguir los costos y relacionarlos con la productividad individual y organizacional.

* Reducción de costos:

Los diseños de sistemas ayudan a disminuir los costos, ya que toman ventaja de las capacidades de cálculo automático y de recuperación de datos que están incluidos en procedimientos de programas en computadora. Muchas tareas son realizadas por programas de cómputo, lo cual deja un número muy reducido de éstas para su ejecución manual, disminuyendo al personal.

Control

*Mayor seguridad de información:

Algunas veces el hecho de que los datos puedan ser guardados en una forma adecuada para su lectura por medio de una máquina, es una seguridad difícil de alcanzar en un medio ambiente donde no existen computadoras.

Para aumentar la seguridad, generalmente se desarrollan sistemas de información automatizados. El acceso a la información puede estar controlado por un complejo sistemas de contraseñas, limitado a ciertas áreas o personal, si está bien protegido, es difícil de acceder.

*Menor margen de error: (mejora de la exactitud y la consistencia)

Esto se puede lograr por medio del uso de procedimientos de control por lotes, tratando de que siempre se siga el mismo procedimiento. Cada paso se lleva a cabo de la misma manera, consistencia y con exactitud: por otra parte se efectúan todos los pasos para cada lote de transacciones. A diferencia del ser humano, el sistema no se distrae con llamadas telefónicas, ni olvidos e interrupciones que sufre el ser humano. Si no se omiten etapas, es probable que no se produzcan errores.

Comunicación

La falta de comunicación es una fuente común de dificultades que afectan tanto a cliente como a empleados. Sin embargo, los sistemas de información bien desarrollados amplían la comunicación y facilitan la integración de funciones individuales.

* Interconexión: ( aumento en la comunicación)

Muchas empresas aumentan sus vías de comunicación por medio del desarrollo de redes para este fin, dichas vías abarcan todo el país y les permiten acelerar el flujo de información dentro de sus oficinas y otras instalaciones que no se encuentran en la misma localidad.

Una de las características más importantes de los sistemas de información para oficinas es la transmisión electrónica de información, como por ejemplo, los mensajes y los documentos.

* Integración de áreas en las empresas:

Con frecuencia las actividades de las empresas abarcan varias áreas de la organización, la información que surge en un área se necesita en otra área, por ejemplo.

Los sistemas de información ayudan a comunicar los detalles del diseño a los diferentes grupos, mantienen las especificaciones esenciales en un sitio de fácil acceso y calculan factores tales como el estrés y el nivel de costos a partir de detalles proporcionados por otros grupos.

3. Competitividad

Los sistemas de información computacionales son un arma estratégica, capaz de cambiar la forma en que la compañía compite en el mercado, en consecuencia éstos sistemas mejoran la organización y la ayudan a ganar "ventaja competitiva", sin embargo, si los competidores de la compañía tienen capacidades mas avanzadas para el procesamiento de información, entonces los sistemas de información pueden convertirse en una "desventaja competitiva".

Una organización puede ganar ventaja competitiva a través de sus sistemas de información de diferentes formas.

* Asegurar clientes:

Como los clientes son los más importante para una organización, los directivos buscan diferentes formas para conseguir nuevos clientes y mantener los que tienen. Para eso las empresas proporcionan:

1- Mejores precios

2- Servicios exclusivos.

3- Productos diferentes.

La ventaja en precios se observa continuamente en la actividad comercial (sí el producto es exclusivo o distinto entonces tener el liderazgo en precios bajos quizás no sea el objetivo a alcanzar).

La estrategia eficaz de precios a menudo se alcanza al desarrollar sistemas de información por razones tales como reducción de costos y ganancia en la exactitud.

Generalmente cuando una compañía puede ofrecer servicios exclusivos y atraer clientes, es posible que los competidores no sean capaces de atraer a los clientes de la compañía.

* Dejar fuera a los competidores:

Pasar sobre los competidores puede ser un inconveniente si ellos se encuentran la forma para duplicar los logros de la compañía, los sistemas de información pueden ser la base para dejar fuera del mercado a la competencia ya sea el disuadir sus intentos por ingresar al mercado o creándoles obstáculo para su entrada.

*Mejores acuerdos con los proveedores:

En los negocios, los proveedores también tienen importancia estratégica. Una manera de utilizar los sistemas de información para favorecer arreglos con los proveedores es ofreciendo un mejor precio. Disminuyendo los costos.

*Formar bases para nuevos productos

Los sistemas de información también forman la base de muchos productos y servicios nuevos.

Los servicios de base de datos experimentan un crecimiento común en todas las industrias.

Productos que van desde programas personales hasta planes de construcción pueden hacerse a la medida del cliente gracias al procesamiento de información.

Una cosa es clara, es necesario que los sistemas entren en operación y que trabajen de manera confiable.

4. Estrategias para su desarrollo

Los sistemas de información basados en computadoras sirven para diversas finalidades que van desde el procesamiento de las transacciones de una empresa hasta proveer de la información necesaria para decidir sobre asuntos que se presentan con frecuencia.

En algunos casos los factores que deben considerarse en un proyecto de sistema de información, como el aspecto más apropiado de la computadora o la tecnología de comunicaciones que se va a utilizar, el impacto del nuevo sistema sobre los empleados de la empresa y las características específicas que el sistema debe tener se pueden determinar de manera secuencial. Todas estas situaciones están determinadas por tres métodos básicos:

5. Método del ciclo de vida clásico

El método del ciclo de vida para desarrollo de sistemas es el conjunto de actividades que los analistas, diseñadores y usuarios realizan para desarrollar e implantar un sistema de información.

El método del ciclo de vida para el desarrollo de sistemas consta de las siguientes actividades:

1) Investigación preliminar

La solicitud para recibir ayuda de un sistema de información pueden originarse por una persona, cuando se formula la solicitud comienza la primera actividad del sistema. Esta actividad tiene tres partes:

*Aclaración de la solicitud

Antes de considerar cualquier investigación de sistemas, la solicitud de proyecto debe examinarse para determinar con precisión lo que el solicitante desea; ya que muchas solicitudes que provienen de empleados y usuarios no están formuladas de manera clara.

*Estudio de factibilidad

En la investigación preliminar un punto importante es determinar que el sistema solicitado sea factible. Existen tres aspectos relacionados con el estudio de factibilidad, que son realizados por los general por analistas capacitados o directivos:

-Factibilidad técnica.

Estudia si el trabajo para el proyecto, puede desarrollarse con el software y el personal existente, y si en caso de necesitar nueva tecnología, cuales son las posibilidades de desarrollarla (no solo el hardware).

-Factibilidad económica.

Investiga si los costos se justifican con los beneficios que se obtienen, y si se ha invertido demasiado, como para no crear el sistema si se cree necesario.

-Factibilidad operacional:

Investiga si será utilizado el sistema, si los usuarios usaran el sistema, como para obtener beneficios.

* Aprobación de la solicitud

Algunas organizaciones reciben tantas solicitudes de sus empleados que sólo es posible atender unas cuantas. Sin embargo, aquellos proyectos que son deseables y factibles deben incorporarse en los planes. En algunos casos el desarrollo puede comenzar inmediatamente, aunque lo común es que los miembros del equipo de sistemas estén ocupados en otros proyectos. Cuando esto ocurre, la administración decide que proyectos son los más importantes y el orden en que se llevarán acabo.

Después de aprobar la solicitud de un proyecto se estima su costo, el tiempo necesario para terminarlo y las necesidades de personal

2) Determinación de los requisitos del sistema.

Los analistas, al trabajar con los empleados y administradores, deben estudiar los procesos de una empresa para dar respuesta a ciertas preguntas claves.

Para contestar estas preguntas, el analista conversa con varias personas para reunir detalles relacionados con los procesos de la empresa. Cuando no es posible entrevistar, en forma personal a los miembros de grupos grandes dentro de la organización, se emplean cuestionarios para obtener esta información.

Las investigaciones detalladas requieren el estudio de manuales y reportes, la observación en condiciones reales de las actividades del trabajo y, en algunas ocasiones, muestras de formas y documentos con el fin de comprender el proceso en su totalidad.

Reunidos los detalles, los analistas estudian los datos sobre requerimientos con la finalidad de identificar las características que debe tener el nuevo sistema.

3)Diseño del sistema.(diseño lógico)

El diseño de un sistema de información responde a la forma en la que el sistema cumplirá con los requerimientos identificados durante la fase de análisis.

Es común que los diseñadores hagan un esquema del formato o pantalla que esperan que aparezca cuando el sistema esta terminado, se realiza en papel o en la pantalla de una terminal utilizando algunas de las herramientas automatizadas disponibles para el desarrollo de sistemas.

También se indican los datos de entrada, los que serán calculados y los que deben ser almacenados. Los diseñadores seleccionan las estructuras de archivo y los dispositivos de almacenamiento. Los procedimientos que se escriben indican cómo procesar los datos y producir salidas.

Los documentos que contienen las especificaciones de diseño representan a éste mediante diagramas, tablas y símbolos especiales.

La información detallada del diseño se proporciona al equipo de programación para comenzar la fase de desarrollo de software.

Los diseñadores son responsables de dar a los programadores las especificaciones de software completas y claramente delineadas.

4) Desarrollo de software (diseño físico).

Los encargados de desarrollar software pueden instalar software comprado a terceros o escribir programas diseñados a la medida del solicitante. La elección depende del costo de cada alternativa, del tiempo disponible para escribir el software y de la disponibilidad de los programadores.

Los programadores son responsables de la documentación de los programas y de explicar su codificación, esta documentación es esencial para probar el programa y hacer el mantenimiento.

5) Prueba de sistemas.

Durante esta fase, el sistema se emplea de manera experimental para asegurarse que el software no tenga fallas, es decir, que funciona de acuerdo con las especificaciones y en la forma en que los usuarios esperan que lo haga. Se alimentan como entradas conjuntos de datos de prueba para su procesamiento y después se examinan los resultados. En ocasiones se permite que varios usuarios utilicen el sistema, para que los analistas observen si tratan de emplearlo en formas no previstas, antes de que la organización implante el sistema y dependa de él.

En muchas organizaciones, las pruebas son conducidas por personas ajenas al grupo que escribió los programas originales; para asegurarse de que las pruebas sean completas e imparciales y, por otra, que el software sea más confiable.

6) Implantación y evaluación.

La implantación es el proceso de verificar e instalar nuevo equipo, entrenar a los usuarios, instalar la aplicación y construir todos los archivos de datos necesarios para utilizarla.

Cada estrategia de implantación tiene sus méritos de acuerdo con la situación que se considere dentro de la empresa. Sin importar cuál sea la estrategia utilizada, los encargados de desarrollar el sistema procuran que el uso inicial del sistema se encuentre libre de problemas.

Los sistemas de información deben mantenerse siempre al día, la implantación es un proceso de constante evolución.

La evaluación de un sistema se lleva a cabo para identificar puntos débiles y fuertes. La evaluación ocurre a lo largo de cualquiera de las siguientes dimensiones:

* Evaluación operacional

Valoración de la forma en que funciona el sistema, incluyendo su facilidad de uso, tiempo de respuesta, lo adecuado de los formatos de información, confiabilidad global y nivel de utilización.

* Impacto organizacional

Identificación y medición de los beneficios para la organización en áreas como finanzas (costos, ingresos y ganancias), eficiencia operacional e impacto competitivo.

- Opinión de los administradores

Evaluación de las actitudes de directivos y administradores dentro de la organización así como de los usuarios finales.

* Desempeño del desarrollo

La evaluación del proceso de desarrollo de acuerdo con criterios tales como tiempo y esfuerzo de desarrollo, concuerdan con presupuestos y estándares, y otros criterios de administración de proyectos.

Cuando la evaluación de sistema se conduce en forma adecuada proporciona mucha información que puede ayudar a mejorar la efectividad de los esfuerzos cuando la evaluación de sistemas se conduce en forma adecuada proporciona mucha información que puede ayudar a mejorar la efectividad de los esfuerzos de desarrollo de aplicaciones subsecuentes.

6. Método de desarrollo por análisis estructurado

Muchos especialistas en sistemas de información reconocen la dificultad de comprender de manera completa sistemas grandes y complejos. El método de desarrollo del análisis estructurado tiene como finalidad superar esta dificultad por medio de:

1. la división del sistema en componentes y

2. la construcción de un modelo del sistema.

El método incorpora elementos tanto de análisis como de diseño

El análisis estructurado se concentra en especificar lo que se requiere que haga el sistema o la aplicación. Permite que las personas observen los elementos lógicos (lo que hará el sistema) separados de los componentes físicos (computadora, terminales, sistemas de almacenamiento, etc.). Después de esto se puede desarrollar un diseño físico eficiente para la situación donde será utilizado.

El análisis estructurado es un método para el análisis de sistemas manuales o automatizados, que conduce al desarrollo de especificaciones para sistemas nuevos o para efectuar modificaciones a los ya existentes. Éste análisis permite al analista conocer un sistema o proceso en una forma lógica y manejable al mismo tiempo que proporciona la base para asegurar que no se omite ningún detalle pertinente.

Componentes

Símbolos gráficos: Iconos y convenciones para identificar y describir los componentes de un sistema junto con las relaciones entre estos componentes.

Diccionario de datos: descripción de todos los datos usados en el sistema. Puede ser manual o automatizado.

Descripciones de procesos y procedimientos: declaraciones formales que usan técnicas y lenguajes que permiten a los analistas describir actividades importantes que forman parte del sistema.

Reglas: estándares para describir y documentar el sistema en forma correcta y completa.

Diseño Estructurado.

El diseño Estructurado es otro elemento del Método de Desarrollo por Análisis Estructurado que emplea la descripción gráfica, se enfoca en el desarrollo de especificaciones del software.

El objetivo del Diseño Estructurado es programas formados por módulos independientes unos de otros desde el punto de vista funcional.

El Diseño Estructurado es una técnica específica para el diseño de programas.

La herramienta fundamental del Diseño Estructurado es el diagrama estructurado que es de naturaleza gráfica y evitan cualquier referencia relacionada con el hardware o detalles físicos. Su finalidad no es mostrar la lógica de los programas (que es la tarea de los diagramas de flujo). Los Diagramas Estructurados describen la interacción entre módulos independientes junto con los datos que un módulo pasa a otro cuando interacciona con él.

Análisis de flujo de datos.

Estudia el empleo de los datos para llevar a cabo procesos específicos de la empresa dentro del ámbito de una investigación de sistemas usa los diagrama de flujos de datos y los diccionarios de datos.

Herramientas

Las herramientas muestran todas las características esenciales del sistema y la forma en que se ajustan entre si, como es muy difícil entender todo un proceso de la empresa en forma verbal, las herramientas ayudan a ilustrar los componentes esenciales de un sistema, junto con sus acciones.

Diagrama de flujo de datos

Es el modelo del sistema. Es la herramienta mas importante y la base sobre la cual se desarrollan otros componentes.

El modelo original se detalla en diagramas de bajo nivel que muestran características adicionales del sistema. Cada proceso puede desglosarse en diagramas de flujos de datos cada vez más detallados. Repitiéndose esta secuencia hasta que se obtienen suficientes detalles para que el analista comprenda la parte del sistema que se encuentra bajo investigación.

El diagrama físico de datos da un panorama del sistema en uso, dependiente de la implantación, mostrando cuales tareas se hacen y como son hechas. Incluyen nombres de personas, nombres o números de formato y documento, nombres de departamentos, archivos maestro y de transacciones, equipo y dispositivos utilizados, ubicaciones, nombres de procedimientos.

El diagrama lógico de datos da un panorama del sistema, pero a diferencia del físico es independiente de la implantación, que se centra en el flujo de datos entre los procesos, sin considerar los dispositivos específicos y la localización de los almacenes de datos o personas en el sistema. Sin indicarse las características físicas.

Notaciones: son cuatro símbolos, que fueron desarrollados y promovidos la mismo tiempo por dos organizaciones: Yourdon y Gane y Sarson.

Flujo de datos: son movimientos de datos en una determinada dirección, desde un origen hasta un destino. Es un paquete de datos.

Yourdon Gane y Sarson

Proceso: son personas, procedimientos o dispositivos que utilizan o producen datos. No identifica el componente físico

Fuente o destino de los datos: pueden ser personas, programas, organizaciones u otras entidades que interactúan con el sistema pero que se encuentre fuera.

Almacenamiento de datos: es un lugar donde se guardan los datos. El almacenamiento de datos puede representar dispositivos tanto computarizados como no computarizados.

Cada componente en un diagrama de flujo de datos tiene una etiqueta con un nombre descriptivo. Los nombres de los procesos reciben un numero para poder identificarlos, este numero tiene un valor adicional cuando se estudian los componentes que integran un proceso especifico

DESARROLLO HISTÓRICO DE LA GEOMETRÍA. ALGUNAS IDEAS

La historia del origen de la Geometría es muy similar a la de la Aritmética, siendo sus conceptos más antiguos consecuencia de las actividades prácticas. Los primeros hombres llegaron a formas geométricas a partir de la observación de la naturaleza.


El sabio griego Eudemo de Rodas, atribuyó a los egipcios el descubrimiento de la geometría, ya que, según él, necesitaban medir constantemente sus tierras debido a que las inundaciones del Nilo borraban continuamente sus fronteras. Recordemos que, precisamente, la palabra geometría significa medida de tierras.

Los egipcios se centraron principalmente en el cálculo de áreas y volúmenes, encontrando, por ejemplo, para el área del círculo de radio unidad un valor aproximado de 3'1605. Sin embargo el desarrollo geométrico adolece de falta de teoremas y demostraciones formales. También encontramos rudimentos de trigonometría y nociones básicas de semejanza de triángulos.

También se tienen nociones geométricas en la civilización mesopotámica, constituyendo los problemas de medida el bloque central en este campo: área del cuadrado, del círculo, volúmenes de determinados cuerpos, semejanza de figuras, e incluso hay autores que afirman que esta civilización conocía el teorema de Pitágoras aplicado a problemas particulares, aunque no, obviamente, como principio general.

No se puede decir que la geometría fuese el punto fuerte de las culturas china e india, limitándose principalmente a la resolución de problemas sobre distancias y semejanzas de cuerpos. También hay quien afirma que estas dos civilizaciones llegaron a enunciados de algunos casos particulares del teorema de Pitágoras, e incluso que desarrollaron algunas ideas sobre la demostración de este teorema.

En los matemáticos de la cultura helénica los problemas prácticos relacionados con las necesidades de cálculos aritméticos, mediciones y construcciones geométricas continuaron jugando un gran papel. Sin embargo, lo novedoso era, que estos problemas poco a poco se desprendieron en una rama independiente de las matemáticas que obtuvo la denominación de "logística". A la logística fueron atribuidas: las operaciones con números enteros, la extracción numérica de raíces, el cálculo con la ayuda de dispositivos auxiliares, cálculo con fracciones, resolución numérica de problemas que conducen a ecuaciones de 1er y 2º grado, problemas prácticos de cálculo y constructivos de la arquitectura, geometría, agrimensura, etc...

Al mismo tiempo ya en la escuela de Pitágoras se advierte un proceso de recopilación de hechos matemáticos abstractos y la unión de ellos en sistemas teóricos. Junto a la demostración geométrica del teorema de Pitágoras fue encontrado el método de hallazgo de la serie ilimitada de las ternas de números "pitagóricos", esto es, ternas de números que satisfacen la ecuación a2+b2=c2.

En este tiempo transcurrieron la abstracción y sistematización de las informaciones geométricas. En los trabajos geométricos se introdujeron y perfeccionaron los métodos de demostración geométrica. Se consideraron, en particular: el teorema de Pitágoras, los problemas sobre la cuadratura del círculo, la trisección de un ángulo, la duplicación del cubo, la cuadratura de una serie de áreas (en particular las acotadas por líneas curvas).

Paralelamente, al ampliarse el número de magnitudes medibles, debido a la aparición de los números irracionales, se originó una reformulación de la geometría, dando lugar al álgebra geométrica. Esta nueva rama incluía entre otros conceptos el método de anexión de áreas, el conjunto de proposiciones geométricas que interpretaban las cantidades algebraicas, división áurea, expresión de la arista de un poliedro regular a través del diámetro de la circunferencia circunscrita. Sin embargo, el álgebra geométrica estaba limitada a objetos de dimensión no mayor que dos, siendo inaccesibles los problemas que conducían a ecuaciones de tercer grado o superiores, es decir, se hacían imposibles los problemas que no admitieran solución mediante regla y compás. La historia sobre la resolución de los tres problemas geométricos clásicos (sobre la cuadratura del círculo, la trisección de un ángulo, la duplicación del cubo) está llena de anécdotas, pero lo cierto es que como consecuencia de ellos surgieron, por ejemplo, las secciones cónicas, cálculo aproximado del número pi, el método de exhaución como predecesor del cálculo de límites o la introducción de curvas trascendentes.

Asimismo, el surgimiento de la irracionalidad condicionó la necesidad de creación de una teoría general de las relaciones, teoría cuyo fundamento inicial lo constituyó el algoritmo de Euclides.

Las primeras teorías matemáticas que se abstrajeron de los problemas concretos o de un conjunto de problemas de un mismo tipo, crearon las condiciones necesarias y suficientes para el reconocimiento de la autonomía y especificidad de las matemáticas.

El carácter abstracto del objeto de las matemáticas y los métodos de demostración matemática establecidos, fueron las principales causas para que esta ciencia se comenzara a exponer como una ciencia deductiva, que a partir de unos axiomas, presenta una sucesión lógica de teoremas. Las obras en las cuales, en aquella época se exponían los primeros sistemas matemáticos se denominaban "Elementos".

Se encuentran elementos pertenecientes a muchos autores, sin embargo todos ellos han quedado relegados a un segundo plano tras la obra matematica más impresionante de la historia: Los Elementos de Euclides. "Los Elementos", como denominaremos a esta obra a partir de ahora, están constituidos por trece libros, cada uno de los cuales consta de una sucesión de teoremas. A veces se añaden otros dos, los libros 14 y 15 que pertenecen a otros autores pero por su contenido, están próximos al último libro de Euclides.

En "Los Elementos" de Euclides se recogen una serie de axiomas o postulados que sirvieron de base para el posterior desarrollo de la geometría. Es de especial interés, por la controversia que originó en épocas posteriores el quinto axioma, denominado "el de las paralelas", según el cual dos rectas paralelas no se cortan nunca. Durante siglos se asumió este axioma como irrebatible, hasta que en el siglo XIX surgieron las llamadas geometrías no euclídeas, que rebatieron este postulado.

Con posterioridad a Euclides y Arquímedes, las matemáticas cambiaron fuertemente, tanto en su forma como en su contenido, haciendo el proceso de formación de nuevas teorías más pausado, hasta llegar a interrumpirse.
Entre las nuevas teorías desarrolladas ocupa el primer lugar la teoría de las secciones cónicas, que surgió de las limitaciones del álgebra geométrica. El interés hacia las secciones cónicas creció a medida que aumentaban la cantidad de problemas resueltos con su ayuda. Sin duda, la obra más completa, general y sistemática de las secciones cónicas se debe a Apolonio de Perga.

En la época del dominio romano destacan algunos recetarios en forma de reglas que permitían el cálculo de algunas áreas y volúmenes; y en especial la conocida fórmula de Herón para calcular el área del triángulo conocidos los tres lados.

Durante el primer siglo del Imperio Musulmán no se produjo ningún desarrollo científico, ya que los árabes, no habían conseguido el impulso intelectual necesario, mientras que el interés por el saber en el resto del mundo, había desaparecido casi completamente. Fue a partir de la segunda mitad del siglo VIII, cuando comenzó el desenfrenado proceso de traducir al árabe todas las obras griegas conocidas, fundándose escuelas por todo el Imperio.

Destacaremos como avance anecdótico, pero no por ello carente de valor, la obtención del número pi con 17 cifras exactas mediante polígonos inscritos y circunscritos en la circinferencia realizada por Kashi (s. XV). Después de más de 150 años, en 1593, en Europa, Viète encontró sólo nueve cifras exactas. Hubo que esperar a fines del siglo XVI y comienzos del XVII para repetir el cálculo de Kashi.

El rasgo característico más importante de las matemáticas árabes fue la formación de la trigonometría. En relación con los problemas de astronomía, confeccionaron tablas de las funciones trigonométricas con gran frecuencia y alto grado de exactitud, tanto en trigonometría plana como esférica.
Entre las obras geométricas destacan las de Omar Khayyam (s. XVI) y Nasir Edin (s. XIII), directamente influenciadas por las obras clásicas, pero a las que contribuyeron con distintas generalizaciones y estudios críticos, como los relativos al axioma euclideano del paralelismo, que pueden considerarse como estudios precursores de la geometría no euclideana.

En el continente europeo, las matemáticas no tienen un origen tan antiguo como en muchos países del Lejano y Medio Oriente, alcanzando sólo éxitos notorios en la época del medievo desarrollado y especialmente en el Renacimiento.

Podemos considerar la obra de Fibonacci "Practica Geometriae" como el punto de arranque de la geometría renacentista. Esta obra está dedicada a resolver determinados problemas geométricos, especialmente medida de áreas de polígonos y volúmenes de cuerpos.

El profesor parisino Nicole Oresmes (1328-1382) llegó a utilizar en una de sus obras coordenadas rectangulares, aunque de forma rudimentaria, para la representación gráfica de ciertos fenómenos físicos.

Ya en el siglo XV, época de las grandes navegaciones, la trigonometría fue separada de la astronomía, alzándose como ciencia independiente de la mano de Regiomontano (1436-1474), que trató de una manera sistemática todos los problemas sobre la determinación de triángulos planos y esféricos. Asimismo en esta obra se establece un notable cambio desde el álgebra literal al álgebra simbólica.

Fue François Viète (1540-1603) quien dio un sistema único de símbolos algebraicos consecuentemente organizado, estableciendo en todo momento, una fuerte conexión entre los trabajos trigonométricos y algebraicos, de forma que de igual manera que se le considera el creador del álgebra lineal, se le podría considerar como uno de los padres del enfoque analítico de la trigonometría, esto es, la goniometría.

Para hacer más fáciles los cálculos, los matemáticos desarrollaron ciertos procedimientos en los que, el papel fundamental lo jugaban determinadas relaciones trigonométricas, lo que llevó a la confección de numerosas tablas trigonométricas. En la elaboración de tablas trabajaron, por ejemplo, Copérnico (1473-1543) y Kepler (1571,1630). Semejantes métodos se utilizaban tan frecuentemente que recibieron el nombre de "prostaferéticos". Ellos fueron utilizados por los matemáticos de Oriente Medio, Viète, Tycho Brahe, Wittich, Bürgi y muchos otros. Estos métodos siguieron utilizándose incluso después de la invención de los logaritmos a comienzos del siglo XVII, aunque sus fundamentos, basados en la comparación entre progresiones aritméticas y geométricas, comenzaron a fraguarse mucho antes.

Durante el siglo XVII surgieron casi todas las disciplinas matemáticas, produciéndose en lo que a la geometría se refiere el nacimiento de la geometría analítica.

Sin duda los dos grandes en esta materia y época fueron René Descartes (1596-1650) y Pierrede Fermat (1601-1655).

La última parte de la famosa obra de Descartes "Discurso del Método" denominada "Géometrie", detalla en su comienzo, instrucciones geométricas para resolver ecuaciones cuadráticas, centrándose seguidamente en la aplicación del álgebra a ciertos problemas geométricos. Analiza también curvas de distintos órdenes, para terminar en el tercer y último libro que compone la obra, con la construcción de la teoría general de ecuaciones, llegando a la conclusión de que el número de raíces de una ecuación es igual al grado de la misma, aunque no pudo demostrarlo. Prácticamente la totalidad de la Géometrie está dedicada a la interrelación entre el álgebra y la geometría con ayuda del sistema de coordenadas.

Simultáneamente con Descartes, Pierre de Fermat desarrolló un sistema análogo al de aquél. Las ideas de la geometría analítica, esto es, la introducción de coordenadas rectangulares y la aplicación a la geometría de los métodos algebraicos, se concentran en una pequeña obra: "introducción a la teoría de los lugares planos y espaciales". Aquellos lugares geométricos representados por rectas o circunferencias se denominaban planos y los representados por cónicas, especiales. Fermat abordó la tarea de reconstruir los "Lugares Planos" de Apolonio, describiendo alrededor de 1636, el principio fundamental de la geometría analítica: "siempre que en una ecuación final aparezcan dos incógnitas, tenemos un lugar geométrico, al describir el extremo de uno de ellos una línea, recta o curva". Utilizando la notación de Viète, representó en primer lugar la ecuación Dx=B, esto es, una recta. Posteriormente identificó las expresiones xy=k2; a2+x2=ky; x2+y2+2ax+2by=c2; a2-x2=ky2 con la hipérbola, parábola circunferencia y elipse respectivamente. Para el caso de ecuaciones cuadráticas más generales, en las que aparecen varios términos de segundo grado, aplicó rotaciones de los ejes con objeto de reducirlas a los términos anteriores.

La extensión de la geometría analítica al estudio de los lugares geométricos espaciales, la realizó por la vía del estudio de la intersección de las superficies espaciales por planos. Sin embargo, las coordenadas espaciales también en él están ausentes y la geometría analítica del espacio quedó sin culminar.

En el siglo XVIII, además de la consolidación de la geometría analítica, surgieron la geometría diferencial, la geometría descriptiva y proyectiva, así como numerosos trabajos sobre los fundamentos de la geometría.

Entre los diferentes problemas y métodos de la geometría, tuvieron gran significado las aplicaciones geométricas del cálculo infinitesimal. De ellas surgió y se desarrolló la geometría diferencial, la ciencia que ocupó durante el siglo XVIII el lugar central en al sistema de las disciplinas geométricas.

A comienzos de siglo ya habían sido estudiados muchos fenómenos de las curvas planas por medio del análisis infinitesimal, para pasar posteriormente a estudiar las curvas espaciales y las superficies. Este traspaso de los métodos de la geometría bidimensional al caso tridimensional fue realizado por Clairaut. Sin embargo, su obra fue eclipsada, como casi todo en esta época, por los trabajos de Euler.

Fue Euler quien, en 1748, sistematizó la geometría analítica de una manera formal. En primer lugar expuso el sistema de la geometría analítica en el plano, introduciendo además de las coordenadas rectangulares en el espacio, las oblicuas y polares. En segundo lugar, estudió las transformaciones de los sistemas de coordenadas. También clasificó las curvas según el grado de sus ecuaciones, estudiando sus propiedades generales. En otros apartados de sus obras trató las secciones cónicas, las formas canónicas de las ecuaciones de segundo grado, las ramas infinitas y asintóticas de las secciones cónicas y clasificó las curvas de tercer y cuarto orden, demostrando la inexactitud de la clasificación newtoniana. También estudió las tangentes, problemas de curvaturas, diámetros y simetrías, semejanzas y propiedades afines, intersección de curvas, composición de ecuaciones de curvas complejas, curvas trascendentes y la resolución general de ecuaciones trigonométricas. Todo estos aspectos se recogen en el segundo tomo de la obra "Introducción al análisis..." que Euler dedicó exclusivamente a la geometría analítica.

Los métodos de la geometría descriptiva surgieron en el dominio de las aplicaciones técnicas de la matemática y su formación como ciencia matemática especial, se culminó en los trabjos de Monge, cuya obra en este terreno quedó plasmada en el texto "Géometrie descriptive". En la obra se aclara, en primer lugar, el método y objeto de la geometría descriptiva, prosiguiendo a continuación, con instrucciones sobre planos tangentes y normales a superficies curvas. Analiza en capítulos posteriores la intersección de superficies curvas y la curvatura de líneas y superficies.
El perfeccionamiento de carácter particular y la elaboración de diferentes métodos de proyección contituyeron el contenido fundamental de los trabjos sobre geometría proyectiva en lo sucesivo. La idea del estudio de las propiedades proyectivas de los objetos geométricos, surgió como un nuevo enfoque que simplificara la teoría de las secciones cónicas. Las obras de Desargues y Pascal resuelven este problema y sirven de base a la nueva geometría.

La geometría hacia comienzos del siglo XIX representaba ya un amplio complejo de disciplinas surgidas del análisis y generalizaciones de los datos sobre las formas espaciales de los cuerpos. Junto a las partes elementales, se incluyeron en la geometría casi todas aquellas partes que la conforman actualmente.

La geometría analítica realizó un gran camino de desarrollo y determinó su lugar como parte de la geometría que estudia las figuras y transformaciones dadas por ecuaciones algebraicas con ayuda del método de coordenadas utilizando los métodos del álgebra.

La geometría diferencial se caracterizó por la utilización de los conceptos y métodos del cálculo diferencial, lo que conllevó relaciones estables con el análisis matemático y con numerosos problemas aplicados.

Una de las características principales de la geometría que se desarrolló durante la segunda mitad del siglo XIX, fue el entusiasmo con que los matemáticos estudiaron una gran variedad de transformaciones. De ellas, las que se hicieron más populares fueron las que constituyen el grupo de transformaciones que definen la denominada geometría proyectiva. Los métodos aparentemente detenidos en su desarrollo desde la época de Desargues y Pascal, de estudio de las propiedades de las figuras invariantes respecto a la proyección, se conformaron en los años 20 del siglo XIX en una nueva rama de la geometría: la geometría proyectiva, merced sobre todo a los trabajos de J. Poncelet.

Otro aspecto esencial durante este siglo fue el desarrollo de las geometrías no euclideanas. Podríamos considerar fundador de esta geometría al matemático ruso Nicolai Ivanovich Lobachevski (1792-1856). Su obra mostraba que era necesario revisar los conceptos fundamentales que se admitían sobre la naturaleza de la matemática, pero ante el rechazo de sus contemporáneos tuvo que desarrollar sus ideas en solitario aislamiento.
El punto de partida de las investigaciones de Lobachevski sobre geometría no euclideana fue el axioma de las paralelas de Euclides, sin demostración durante siglos. Lobachevski, que inicialmente intentó demostrar dicho axioma, rápidamente se dio cuenta que ello era imposible, sustituyendo dicho axioma por su negación: a través de un punto no contenido en una recta se puede trazar más de una paralela que yace en el mismo plano que la primera.

El año 1826 puede considerarse como la fecha de nacimiento de esta geometría no euclideana o lobachevskiana, siendo en ese año cuando el autor presentó muchos de los trabajos que avalaban la nueva teoría.

En 1829 Janos Bolyai (1802-1860) llegó a la misma conclusión a la que había llegado Lobachevski. E incluso el mismo Gauss que apoyaba y elogiaba a escondidas, nunca de forma pública, los trabajos de Bolyai y Lobachevski, es posible que mantuviera los mismos puntos de vista pero los calló por temor a comprometer su reputación científica.

La geometría no euclideana continuó siendo durante varias décadas un aspecto marginal de la matemática, hasta que se integró en ella completamente gracias a las concepciones extraordinariamente generales de Rieman.